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Topics

* Processes in general

* Software processes and notable examples

* Process modeling

* Why and how?
* FTG+PM

* Process improvement
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From the requirements to the product
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Event/Activity/Process
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Software Processes

“The Software Engineering process is the total set of Software
Engineering activities needed to transform requirements into
software”.

Watts S. Humphrey. Software Engineering Institute, CMU. (portal.acm.org/citation.cfm?id=75122)



Waterfall Process
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Watertall with prototyping
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The V Model
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The tester’s double V Model
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Iterative vs. Incremental
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Shari Lawrence Pfleeger. Software Engineering: Theory and Practice (Second Edition). Prentice Hall. 2001.



Spiral Process
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Rational Unified Process (RUP)
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Agile methodologies

* Core principles
* Adaptive planning g ::>
Evolutionary development

Ea rly dellvery Product Backlog

Continuous improvement
Rapid and flexible response to change

* Agile practices

 TDD, Cl, cross-functional team,
pair programming, timeboxing, retrospective...

* Methodologies
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e Scrum, Kanban, Lean, AUP, Crystal Clear...




Not only Software!

——  Life phases of a system
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Capability Maturity Model Integration (CMMI)

- Stable and flexible. Organization Is focused on continuous improvement and
Optimizing is built to pivot and respond to opportunity and change. The organization's
stabllity provides a platform for agility and innovation.

Quantitatively Measured and controlled. Organization is data-driven with quantitative
performance improvement objectives that are predictable and align to

Managed
= meet the needs of internal and external stakeholders,

= o Proactive, rather than reactive. Organization-wide
Defined standards provide guldance across projects, programs
and portfolios.

Managed on the project level. Projects
Managed are planned, performed, measured,
and controlled.

=2 Unpredictable and reactive.
Initial Work gets completed but is
often delayed and over budget.

0000

From: http://www.isaca.org/






Why explicit modeling?

Descriptive

Prescriptive

Proscriptive




Describing Processes

Organizational:

A , e Who Performs?
Informational: e Where in the
A , e Descriptions of organisation?
Dynamic: Activities e Stakeholders?
_ e Sequence of e Artefacts o ..
Functional: Activities e Products
e Functional e Control-flow o
dependencies e Timing
e Data-flow o .
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Consume



Languages

* UML Activities

* Business Process Modeling Notation (BPIVIN)
* BPM

* Event Process Chains

* Petri-nets

* Role Activity Diagram

* FTG+PM

* Etc.



UML Activities
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FTG+PM
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Tool interoperability and process orchestration

Why explicit modeling?
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Power Window Example
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Safety Analysis
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Software process improvement (SPI)

Elements of an SPI framework Specific implementation
Analogy: ﬁﬁ
PDCA cycle in controlling (business) W
-
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T. Rout: "SPICE and the CMM: is the CMM compatible with ISO/IEC 15504." AquiS’98 (1998).
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* Required for improvement

* |dentifies the changes to the process

Performance metrics (business term: “KP1”)

e Typical performance metrics  material costs?
e Minimize cost (SSS) Resource costs?
... . . License costs?
* Minimize queueing time
* Maximize throughput

Multiple complex metrics!



Pl in the FTG+PM
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RCPSP: A special Pl problem

* Resources of limited availability
 Activities of known durations
* Resource requests, linked by precedence relations

* Problem:
* find a schedule S;i—S8i>pi V(Ai,A;)eFE
e of minimal duration
* by assigning a start time to each activity
* such that the precedence relations
* and the resource availabilities are respected

Z bi. < B. VR.e€R.Vt>0
A;e A

* NP-hard in the strong sense!

C. Artigues, S. Demassey, and E. Neron. Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. ISTE, 2007.



summary

* Process: level of abstraction matters

» Software processes as guidelines for SW Engineering
* Waterfall, V Model, RUP, Agile

* Process modeling
* Explicit modeling helps analysis, maintenance and improvement

* Lots of process modeling languages
* Don’t reinvent the wheel!

* FTG+PM
» Software process improvement (SPI)



