Process modeling
Why, what, how?

Istvan David

Borrowed material: Joachim Denil (DSM-TP 2015, Antwerp) 25.11.2016, Antwerp

Topics

* Processes in general

* Software processes and notable examples

* Process modeling

* Why and how?
* FTG+PM

* Process improvement

Example process

o ORI —

Departure
Arrival Queue Cashier
Physical View
—_—
Departure
Arrival Cashier
Queue

[IAT distribution] [ST distribution]

Abstract View

...and another one

Start going

forward.
Wait for the Back up Make a 135 Resume going straight,
ultrasonic sensor a little. degree pivot and repeat the loop to
to see something turn to the left. look for the next wall.

—
—_—
closer than &
. inches away.
—_—
—_—

From the requirements to the product

-

Product

Requirements

Engineering of'c'omplex systems

Event/Activity/Process

Cust2 Process

v_Y

[
: Cust2 Activity Cust2 Activity
|< queue T pay cashier
I

I
I
I
Cust1 Process |
< : >
Custi Activity :

pay cashier

g
|
|

I
I
[
I
I
I
I

Cust1 Arrival
Cust1 Start |pay cashier

|

Cust2 Arrival
Cust2 Start |Queueing

I

Cust1 End pay cashier
Cust1|Leave
I
Cust2 End Queueing
Cust2 Start pay cashier
I
I

!

Cust2 End Pay cashier
Cust2|Leave

!

Event

Software Processes

“The Software Engineering process is the total set of Software
Engineering activities needed to transform requirements into
software”.

Watts S. Humphrey. Software Engineering Institute, CMU. (portal.acm.org/citation.cfm?id=75122)

Waterfall Process

REQUIREMENTS
ANALYSIS

k» SYSTEM

DESIGN

In theory...

\ PROGRAM

DESIGN

CODING

UNIT & INTE-
GRATION TESTING

\, SYSTEM

TESTING

N

ACCEPTANCE

OPERATION
& MAINTENANCE

..andint
T

&

MAINTENANCE

REQUIREMENTS

ne reality

O

/

DELIVERY

&,

SYSTEM
TESTING

o\

INTEGRATION
TESTING

L4 ANALYSIS
AL TN N\ SYSTEM
DESIGN
PROGRAM
DESIGN
PROGRAM
IMPLEMENTATION
-\I

J

UNIT
TESTING

L~

Q

Shari Lawrence Pfleeger. Software Engineering: Theory and Practice (Second Edition). Prentice Hall. 2001.

Watertall with prototyping

REQUIREMENTS Validate
ANALYSIS
sYsTEM [Verify
DESIGN

B PROGRAM
R DESIGN
e g ‘\T CODING
T S
© PROTOTYPING - UNIT & INTE-
i i GRATION TESTING
SYSTEM
TESTING
\.I> ACCEPTANCE
TESTING OPERATION

__o| & MAINTENANCE

Shari Lawrence Pfleeger. Software Engineering: Theory and Practice (Second Edition). Prentice Hall. 2001.

The V Model

o Acceptance
e L L PSP —— | pt
i i Testing
Engineering
System
Requirements |ee=eescmcececcmcaccmemcmmncannncacnncccnaaccncacen > Syst?m
ineeri Testing
Engineering
Architecture Syster?
Ensinaering | s mmes s | Integration
: : Testing
Subsystem
Design ~ f-------mmmmomoooee- | Integration
Testing

\ /

Coding (SW)

Fabrication (HW) [~--i% UnitTesting

The tester’s double V Model

User User Overational Acceptance /
Requirements <@ Requirements f-------------cc-cccecccccccmocnrocraccocccconcoroccnccccccocononans > pS stem @ Operational
Models Model Tests ¥ Tests
Validation
Verification

System System
Requirements [«@| Requirements f--------==-cccececncccccocoaccoacacacncnccacannanan > In;esg::rt:d < Syrit;r:
Models Model Tests ¥
. . Subsystem
Architectural Architectural I
Models it Model Tests |~~~ """"""-momommossesomosssseses | Subsystems |<@®| Integration
Tests
Component Component Component
Legend Design el Design f-----------moceee-- | Components [«@9| Integration
Models Model Tests Tests
Executable
Work Products \ \ / /
Tests Unit Design Unit Design . |
Models Rl Model Tests === Units <@P| Unit Tests

Kevin Forsberg and Harold Mooz, “The Relationship of System Engineering to the Project Cycle,” in
Proceedings of the First Annual Symposium of National Council on System Engineering, October 1991: 57—65.

Iterative vs. Incremental

INCREMENTAL DEVELOPMENT

ITERATIVE DEVELOPMENT

Shari Lawrence Pfleeger. Software Engineering: Theory and Practice (Second Edition). Prentice Hall. 2001.

Spiral Process

1. Determine objectives

' Require-

Review f u'll . ments plan

« | ' '

A Cumulative cost

Progress

) 2, Identify and
resolve risks

b

. \‘_ Risk analysis \
“‘_ Risk analysis *, \

Risk analysis ™, '-,I

o~ o

Opaerational I|

[T
% Concept of
Y *, operation

A Developmeant
\ e, plan

4. Plan the next
iteration Release

\.i Prototype 1\' Prototype 2 rototype I
Concept of __r'l Require- | |

requie- / ments / Draft | /
ments_~ / Detailed |
' ‘ / design /
Verification - V'
& Validation -~ /

7/ Code /
-

A

A

Verification - "'Integration s .
& Validation -~ v

— Test e

Implementation _—
———
3. Development and Test

Boehm B, "A Spiral Model of Software Development and Enhancement", IEEE Computer, IEEE, 21(5):61-72, May 1988

Rational Unified Process (RUP)

Phases
Workflows | | Inception Elaboration Construction Transition

Business Modeling
Reguirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management i H -
Environment r .

Elab #1 | | Elab #2 || Const || Const | Const || Tran
Initial #1 #2 &N a1

Iterations

Agile methodologies

* Core principles
* Adaptive planning g ::>
Evolutionary development

Ea rly dellvery Product Backlog

Continuous improvement
Rapid and flexible response to change

* Agile practices

 TDD, Cl, cross-functional team,
pair programming, timeboxing, retrospective...

* Methodologies

24 h
30 days /
. . Working increment
Sprint Backlog Sprint of the software
& 3 5 3 5
Pending Analysis Development | Test | Deploy
Doing Done Daoing Done o
-) ||~
[’
)) [:
[L LI
—
L ¢

e Scrum, Kanban, Lean, AUP, Crystal Clear...

Not only Software!

—— Life phases of a system
. Preliminary System System System System System
Planning study development production installation operation replacement

Problem i ifj
analysis [||:| —
Frahlem] . L ! i i !
farmulation [] [] |_I [T—\ ?—l
Systemn f ! L F —
SFnthESIS [:I l::l |:' 'Ei Ij—_‘ E Ej T_
System 1 ' 1] 1 1
analysis - L l_*!”] (] I:J:] L] [1

] j i 1 L 1 1
falwton "] | C]) CJ | C3 | O3 | C3J | CJ

] f 1 1 1 1 1
Decision | 7] (] (] [...] L] Elj_]

From: G. Pahl and W. Beitz and J. Feldhusen and K.-H. Grote; Engineering Design — A Systematic Approach; Springer; 2007

Capability Maturity Model Integration (CMMI)

- Stable and flexible. Organization Is focused on continuous improvement and
Optimizing is built to pivot and respond to opportunity and change. The organization's
stabllity provides a platform for agility and innovation.

Quantitatively Measured and controlled. Organization is data-driven with quantitative
performance improvement objectives that are predictable and align to

Managed
= meet the needs of internal and external stakeholders,

= o Proactive, rather than reactive. Organization-wide
Defined standards provide guldance across projects, programs
and portfolios.

Managed on the project level. Projects
Managed are planned, performed, measured,
and controlled.

=2 Unpredictable and reactive.
Initial Work gets completed but is
often delayed and over budget.

0000

From: http://www.isaca.org/

Why explicit modeling?

Descriptive

Prescriptive

Proscriptive

Describing Processes

Organizational:

A , e Who Performs?
Informational: e Where in the
A , e Descriptions of organisation?
Dynamic: Activities e Stakeholders?
_ e Sequence of e Artefacts o ..
Functional: Activities e Products
e Functional e Control-flow o
dependencies e Timing
e Data-flow o .
e Produce —

Consume

Languages

* UML Activities

* Business Process Modeling Notation (BPIVIN)
* BPM

* Event Process Chains

* Petri-nets

* Role Activity Diagram

* FTG+PM

* Etc.

UML Activities

—[Ehnﬂse Menu Item)

. Y
'x'_z.-" "\,.I"

Chosen Menu [tems

T
(X

>
[choose mare]

[choice complete]

—{

Coanfirm Order -)
3

\

Overnight
Delivery

merge

fork .

Recaive

Crder

W

Regular
Delivery

_ flowledge

F
/

Receive

Payment

activity final

LY

FTG+PM

~

Formalism Transformation
Graph

~

Process Model

typed by
[Transformation }4—£ Activity 1

transforms from transforms to

takes produces

: typed by :
E Formalism }—E Artifact }

1 T
echanical clesig ittt “r1T°""°"rr1--"=-=--° l_- ______________________ I
al aaHzes ™ l Mechanical design |- -

- lMechanical Design
Matlak Fe=m==ss=== '-:-:‘It_-l.'ﬂ E_I:.IE_-,-':_-:- F T ==" _.' Matlak g
L i
n Simulate mechanical design
$ s5400.0
Mechanical Design Trace =€ === ===-= B A 20 o e —ﬁ : MechaTr:Lc:J Design

Tool interoperability and process orchestration

Why explicit modeling?

-
o
£
Ol i
g o 4
&
2
% (@ I
0
rescriptive scriptive

- Optimized
process |

Configure

Process engine

Model

repository

Power Window Example

B2 e

~ A -

L LT e

Model ualReq

Textual
Requirements

Mod

Mod! ntext
Refine
SysML Use

Case Diagram

:Use Case

I Diagram

Model //4 :Use Cases |,
Requirements, T 1

SysML Req
Diagram _Require

ToSafetyiremenl

CTL

B “ ct
Timing Behaviour

ExtractR?ir

Hybrid ‘Encapsulated :Encapsulated :CBD :CBD
Formalism BufidrG 3 PN 1 PN y

("
(" [|:Requirements
7| Diagram
g _)
- —a - red A A
L /
:ModelNetwork :ModelEnv || :ModelPlant :ModelControl }
\\\ \\\\ ‘
V= Blant Wo@pniol | :Network ‘M ‘:PIantDSLI | | :Control DSL
! Formalism DSL i J { J
Enwlgosn[nent ’ ‘ Plant DSL ’ ‘ Control DSL ’ / ‘7 T—7
i VA4
/ | ‘RefineNetwork (iControllerToSC)
EnvifoLBD PlanfToChd ContfolloSc ! _— ~
Mode{Ngtwork En: N PlafitToPn St n i :Network Statecharts
! Eormalism
Network Causal Block | "Encapsulated | l
Formalism Diagrams Petrinets UStatecharts’ i /
<77 !
Refngppuoi ’;[:EanoPN] (:PlantToPN)
commbigePN AN L
o
HingtBD

R} :Pl%ntTOde

' Encapsulated
|

Hybrid
Simulationt |

Simulgighybrid Reachability ? \—L
Graph 3 P —

SafetyAnalyﬂjs

HybridSimula- § v ’ ’
tion Trace ; i

Checkdontinuous

TRUE l l7

, . § :ExtractTiming
ScToA@OSAR | [[[thaviour

e levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss, FTG+PM: An Integrated Framework
for Investigating Model Transformation Chains. SDL Forum 2013: 182-202

e Sadaf Mustafiz, Joachim Denil, Levi Lucio, and Hans Vangheluwe; "The FTG+PM Framework for Multi-
Paradigm Modelling: An Automotive Case Study"; Accepted @ MPM2012 of Models2012, 2012

Controller

Mod Case § (—/ N / l l J
Desoribtion 3 :ModelNetwork :ModelEnv)| :ModelPlant -ModelControl

RefinelfsiCase S~ L ,yr
fine g Malant : Network ‘ :Envggsr:_mgnt’ ‘:Plant bsL -Control DSL
SysML Use Use séChse _) Formalism L —
Case Diagram Cases Pes IPtiOIf' E”V'Igosr‘[“em

’ ‘ Plant DSL ’ ‘Control DSL ||

’ % / R I RefineNetwork

(iControllerTosc

Plant Model

Refinel

SysML Use
Case Diagram

Mod Case
Deg, tion

ase:

Use
Cases

:Network :Environm

/|

:Plant DSL I):Control DSL

M trol
7 ﬁnee odignie | Formalism DSL
es nption* E”V'B"S”["em ‘ Plant DSL ' Control DSL ’
/ L :RefineNetwork

passenger
S _/

plant_powerwindow_dsl oon‘irolPassengeﬁVndoaCommnds passsngsa‘W‘ndowCommm

(iControllerTosc

Safety Analysis

ModelTéxualReq I
Requirements

ModefCh n

> J :Use Cases ||

(
IG r Requnements
l

Diagram

erquiremenp%1

\1, I
| . -

v | LN |7/_'

-. Encap_sulated : :Modell;letwork iWods <G | t‘ Model::ontroll —

'g Petrinets [N

’ 7z b el

N | :Encapsulated [-CombinePN]
. PN
p|| ‘—wi l’ :Petri-Net
0P Plafippn §efARa

ncapsulatel mm
@ Retiinets m R

\l/ SysML Req

Diagram ents .
ToSafet iIrefme v tworv i
@ — — ' ,,N | [:ToSafetyReq] [:BuildRG]

oMby

Reachability }eso :Encapsulated
Graph PN / :Reachability,
CTL i — Graph

|
' Formalism del ‘CTL
Simulybrid Reachab I|ty ‘Network
Gra h EEE—
HybridSimula- \ Formalism
tion Trace |

[:CheckReachable]
State

Checkdontinuous !

|

|

| :Requirements
! Diagram
|

|

|

SCTOAéOgAK T _l ‘

:Boolean

Boolean

aviour

Timing

semaviour

Software process improvement (SPI)

Elements of an SPI framework Specific implementation
Analogy: ﬁﬁ
PDCA cycle in controlling (business) W
-

[dertifies | certifies

svitakility of ISO/IEC 15504

Process Software
Assessment Process
Improvement w/
Capability

dEtermination

Capability
Determination

may lead to

Improvement

T. Rout: "SPICE and the CMM: is the CMM compatible with ISO/IEC 15504." AquiS’98 (1998).

ifies
=uitability of

Process assessment s,

to
Process
Assessment
IIIII lea
to
Capability
Determination

Process
Improvement

A

* Required for improvement

* |dentifies the changes to the process

Performance metrics (business term: “KP1”)

e Typical performance metrics material costs?
e Minimize cost (SSS) Resource costs?
... . . License costs?
* Minimize queueing time
* Maximize throughput

Multiple complex metrics!

Pl in the FTG+PM

Languages and
transformations

allocation

constraints >

FTG+PM
typin intents
_)yp J Process Properties
allocation e
Resources — reeesesecoecmereceioccaconeond Costs

. Mechanical design
$ 0
I

|

o Simulate electrical model

$ ooz

Process
mprovemen

Rule-based multi-objective design space exploration (DSE)

Iz
subjected
tar

Process
Assessment
leads R

to to
Capability
Determination

| cientifies
=uitability of

may lead to

[Minimize/maximize

Constraints

‘ Objeciivesk

‘ Optimization rules |

~
~
~~
S~
~~e
~
~~

Transformation rules

Unamanged
process

DSE

- Optimized
anaged process

SimEvents

Stochastic simulations:
event queueing
networks (EQN)

RCPSP: A special Pl problem

* Resources of limited availability
 Activities of known durations
* Resource requests, linked by precedence relations

* Problem:
* find a schedule S;i—S8i>pi V(Ai,A;)eFE
e of minimal duration
* by assigning a start time to each activity
* such that the precedence relations
* and the resource availabilities are respected

Z bi. < B. VR.e€R.Vt>0
A;e A

* NP-hard in the strong sense!

C. Artigues, S. Demassey, and E. Neron. Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. ISTE, 2007.

summary

* Process: level of abstraction matters

» Software processes as guidelines for SW Engineering
* Waterfall, V Model, RUP, Agile

* Process modeling
* Explicit modeling helps analysis, maintenance and improvement

* Lots of process modeling languages
* Don’t reinvent the wheel!

* FTG+PM
» Software process improvement (SPI)

